Identification of two cerebral malaria resistance loci using an inbred wild-derived mouse strain.

نویسندگان

  • Sébastien Bagot
  • Susana Campino
  • Carlos Penha-Gonçalves
  • Sylviane Pied
  • Pierre-André Cazenave
  • Dan Holmberg
چکیده

Malaria is a complex infectious disease in which the host/parasite interaction is strongly influenced by host genetic factors. The consequences of plasmodial infections range from asymptomatic to severe complications like the neurological syndrome cerebral malaria induced by Plasmodium falciparum in humans and Plasmodium berghei ANKA in rodents. Mice infected with P. berghei ANKA show marked differences in disease manifestation and either die from experimental cerebral malaria (ECM) or from hemolytic anemia caused by hyperparasitemia (HP). A majority of laboratory mouse strains so far investigated are susceptible to ECM; however, a number of wild-derived inbred strains show resistance. To evaluate the genetic basis of this difference, we crossed a uniquely ECM-resistant, wild-derived inbred strain (WLA) with an ECM susceptible laboratory strain (C57BL/6J). All of the (WLA x C57BL/6J) F(1) and 97% of the F(2) progeny displayed ECM resistance similar to the WLA strain. To screen for loci contributing to ECM resistance, we analyzed a cohort of mice backcrossed to the C57BL/6J parental strain. A genome wide screening of this cohort provided significant linkage of ECM resistance to marker loci in two genetic regions on chromosome 1 (chi(2) = 18.98, P = 1.3 x 10(-5)) and on chromosome 11 (chi(2) = 16.51, P = 4.8 x 10(-5)), being designated Berr1 and Berr2, respectively. These data provide the first evidence of loci associated with resistance to murine cerebral malaria, which may have important implications for the search for genetic factors controlling cerebral malaria in humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Susceptibility to experimental cerebral malaria induced by Plasmodium berghei ANKA in inbred mouse strains recently derived from wild stock.

The neurological syndrome caused by Plasmodium berghei ANKA in rodents partially mimics the human disease. Several rodent models of cerebral malaria (CM) exist for the study of the mechanisms that cause the disease. However, since common laboratory mouse strains have limited gene pools, the role of their phenotypic variations causing CM is restricted. This constitutes an obstacle for efficient ...

متن کامل

Genetic Analysis of Murine Malaria

Malaria, an infectious disease caused by Plasmodium parasites, is one of the major world-scale health problems. Despite the efforts aimed at finding an effective way to control the disease, the success has been thwarted by the emergence of parasite drug resistance and mosquito resistance to insecticides. The understanding of the natural mechanisms of host defence against the disease could point...

متن کامل

Deletion of T cells bearing the V beta8.1 T-cell receptor following mouse mammary tumor virus 7 integration confers resistance to murine cerebral malaria.

Plasmodium berghei ANKA induces a fatal neurological syndrome known as cerebral malaria (CM) in susceptible mice. Host genetic elements are among the key factors determining susceptibility or resistance to CM. Analysis of mice of the same H-2 haplotype revealed that mouse mammary tumor virus 7 (MTV-7) integration into chromosome 1 is one of the key factors associated with resistance to neurolog...

متن کامل

Characterization of cerebral malaria in the outbred Swiss Webster mouse infected by Plasmodium berghei ANKA.

Plasmodium berghei ANKA (PbA) infection in susceptible inbred mouse strains is the most commonly used experimental model to study pathogenesis of cerebral malaria (CM). Indeed, many concepts on mechanisms related to this complication have arisen from works using this model. Although inbred strains present several advantages and are indicated for most studies, the use of outbred models can show ...

متن کامل

Laboratory and wild-derived mice with multiple loci for production of xenotropic murine leukemia virus.

Mendelian segregation analysis was used to define genetic loci for the induction of infectious xenotropic murine leukemia virus in several laboratory and wild-derived mice. MA/My mice contain two loci for xenotropic virus inducibility, one of which, Bxv -1, is the only induction locus carried by five other inbred strains. The second, novel MA/My locus, designated Mxv -1, is unlinked to Bxv -1 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 15  شماره 

صفحات  -

تاریخ انتشار 2002